
Internal Reuse Breakout Session
Visualization Requirements Workshop
Bethesda, MD ~ June 2-3, 2003

Lead: Steve Parker
Scribe: Jim (a.k.a. Jeeembo) Kohl

Participants: Mike Papka, Mark Duchaineau

Basic Plan:

• Enumerate interfaces that viz tools need
o Data models, graphics, color maps, transfer functions…

• List those in existence
• List reasons they are deficient

Distinguishing Our Breakout vs. “External” Breakout?

• Fine line between internal modules and external tool protocols…

Graphics

• OpenGL ~ efficient, because it doesn’t deal with parallelism…
• Chromium
• DirextX/3D
• Volumizer
• Volumetric extensions to OpenGL
• Cg / Arb Shader…

Scene Graph ~ higher-level object management

• OpenRM
• OpenScenegraph
• OpenInventor
• Performer
• Java3D

GUI Toolkits

• Gtk
• Motif
• Glui
• Wxwindows
• Fltk
• Qt ~ warning: never use this…!

Viz Environments

• AVS
• OpenDX
• SCIRun
• VTK / ParaView
• Ensight

Data Models

• FM / FEL
• Silo
• GMV
• DMF (name not to be spoken)
• TSTT interface

I/O

• HDF5
• NetCDF

Data Management / Migration

• Htar
• Xftp
• SimTracker

Viz and Data Management often considered independently…

• This is a mistake. (SciDAC disconnect ~ SDM vs. Collaboratories)
• Viz often drives data management…!

Do we really want an “Über Data Format”?

• Perhaps not…
• Allow many distinct data formats with generic accessor interfaces…?

o Callback-type interface?

Common Internal Viz Interfaces ~ “Extractions”…

• Streamline integration (as in integrals)
• Color maps / transfer functions

o Color map representation ~ splines, bins, lines, gaussians…
• Isosurfacing
• Contouring
• Material Boundaries

• Particle to Field
• Slicing Planes / Dimension Reduction
• Resampling, Filtering
• Windowed Averaging / Smoothing
• Histograms, Contour Spectrum
• Statistical Analysis
• Topology Analysis
• Denoising
• Resource Management ~ memory, data caching…
• Feature Extraction / Tracking
• Transformations

o Geometric
o Wavelet
o Fourier

• Hierarchy Building
• Chunking / Tiling, and Other Reordering
• Compositing
• Shader Languages
• Level of Detail Management
• Sorting (Geometric)
• Scripting
• Line Graphs, Plots… ☺
• Data Calculator

o In support of a front-end user query language…
• Subsetting

These Areas Define the Universe…
 Æ What are the REAL problems…?

IF all these modules existed, and were interoperable, would this make the science case
any better…?

Scientists want their customized, application-specific viz, with “5 buttons”…

• E.g. “heat transfer in automobile tires” button…
• Framework should be flexible to support a spectrum of people:

o High-Level Application Scientist / Viz Support Person
o Viz Developer
o Bleeding Edge Viz Researcher

What are the benefits of interoperability?

• Faster time to delivery ~ rapid prototypes
• Consistent “look and feel” across independent development

o A la Windows… you can guess what to do / how it works…

Are we covering all of the DOE science needs…?

• We mostly do big data simulations.
• Bio and info viz…?
• Particles as well as fields…?
• Representation Crossover: expand the horizons of application scientists…

o Provide simple solutions that the scientists want, but try to enable
evolution towards more sophisticated representations…!

The “Whole” Visualization Process Includes Data Analysis, Filtering, Processing…

• Starts from simulation output disk file, takes it all the way to final display…

